
V ER SION 1.0 | 0 4.0 4.21

the beginner’s guide to

Monetizing
integrations

2

TA B L E O F C O N T E N T S

Introduction 3

Why integrations? 3

The integration backlog 4

Adopting a monetization mindset 5

Monetization approaches 6

10 ways to monetize integrations 7

An integration ROI framework 11

Integration costs 11

Integration returns -incremental revenue 12

Integration returns - churn reduction 13

Integrations returns - increased win-rate 13

A winning monetization strategy 15

3

Introduction
For software companies, providing integrations for customers and sales prospects is both

more critical but also more fundamentally “table stakes” than ever. In this guide, you’ll

learn how to turn customer integrations - traditionally a cost center - into a revenue driver

by strategically building integrations into pricing tiers, marketplaces, or even as part of a

freemium conversion model.

Why Integrations?

Every B2B SaaS team knows that their products don’t exist in a vacuum. The SaaS explosion

has created an endless array of highly usable, purpose-built applications that teams across

the organization have readily adopted. Tray.io’s recent State of automation report found that

40% of teams currently have more than 40 different applications in their tech stacks. And

software acquisition isn’t slowing at all. 83% of teams expect the number of applications they

use to increase in the next three to five years1.

So much software means that almost every business process spans multiple applications.

Completing tasks requires teams to do work or create data within a specific application,

which they must then share with other applications. Teams’ growing need to share data

across applications translates into integration requests. Buyers of software expect that the

applications they buy will “play nice” with the other tools in their stack by providing easy,

maintenance-free integration capabilities. Integration requirements show up both pre- and

post-sale, derailing opportunities and customer renewal discussions.

40% of teams currently have more
than 40 different applications
in their tech stacks.

 1State of Automation, Tray.io 2020

4

The integration backlog

Almost every SaaS product team has a significant backlog of integration features—the

customer and prospect requests for integrations between their own software products and

specific tools. And most of the integration requests remain in the backlog. There are two

factors that push integration requests to the bottom of the queue: the perceived trade-offs

associated with developing integrations, and the “cost-center” mindset that prevents teams

from realizing the potential value of these features.

Product and engineering teams understand the complexity associated with building

integrations. Unlike internal features, integrations are reliant on third-party APIs. In other

words, it’s not enough to just learn the API of the tools you need to integrate and build a one-

off feature. Instead, building integrations requires constant monitoring and maintenance.

APIs aren’t static. As other products change, add, and remove features, their APIs adjust

accordingly. An integration that works perfectly one day may fail the next when a specific call

is deprecated. For product teams, agreeing to build an integration isn’t a one-time allocation

of engineering resources, it’s an ongoing commitment. When evaluated against other product

priorities, the disproportionate resource requirement of building integrations in-house often

leads teams to deprioritize integration projects across the board.

The ongoing maintenance requirement of building integrations drives the mindset that

integration work is primarily a cost driver. And unfortunately, software buyers often consider

integrations to largely be “table stakes” features, so that the value they provide may not

always outweigh the resources required. As a result, product teams are hesitant to develop

integrations internally, generally push back on requests, and only relent when they receive

a critical mass of complaints, or it’s a necessary requirement to close or retain a strategic

customer.

...software buyers often consider integrations
to largely be ‘table stakes’ features

The idea that integrations are primarily a cost center misses two important points. First, there

are many ways to deliver integrations, and not all of them require significant engineering

resources. Second, while integrations might not appear to be highly differentiating features,

there are many successful monetization strategies that turn them into significant revenue

drivers. This guide explores a number of different ways that SaaS companies can monetize

their integration features, and provides an ROI framework that companies can use to build a

business case for them.

5

SaaS companies should focus their approach
around monetization and revenue.

Adopting a monetization
mindset
Rather than approaching integrations as a sometimes-necessary pain, SaaS companies

should focus their approach around monetization and revenue. Yes, every company

experiences integration pressure from customers and prospects, but having a strong strategy

in place can help companies get ahead of inevitable requests. Effective integration strategy

should focus both on the delivery model and the monetization approach.

The default position of many product teams is to think of integrations as product features—

something that end users access and configure within the product itself. Considering

integrations as features is a common, and highly visible deployment model, but it’s not the

only way to roll them out.

Another common approach to providing integrations is through a professional services model.

Rather than trying to abstract and productize a broad set of customer requirements into a

single feature, some firms develop and deliver integrations as bespoke implementations

for individual clients. Yet another way in which companies deliver integrations is during the

sales cycle. As part of a proof-of-concept (POC), pre-sales teams will develop a lightweight

integration prototype to demonstrate a critical capability to a prospective customer. Some

SaaS companies look to a partnership or community model that relies on third-party

developers to build integrations. The partnership model typically pairs third-party builds with

some type of marketplace where developers can list and sell the solutions they build.

Understanding the delivery model that best suits your product and customers can help

alleviate some of the integration anxiety that keeps product teams from making investments.

In many cases, there may be more-lightweight delivery approaches that are a better fit for

customers and also require fewer development resources.

Delivery model is also an important prerequisite for monetization. There are a broad number

of monetization strategies covered in this guide, but many of them align better with different

delivery models. For example, charging per integration is a no-brainer when each integration

is part of a custom services engagement, but it’s a harder case to make for a simple three-

click feature in the UI.

6

With a clear understanding of the optimal way to deliver integrations, and an appropriate

monetization strategy, product teams will be much better equipped to address integration

requests as they surface. However, being better equipped doesn’t mean every company can

and should implement every integration request, but rather that teams will have a much

better framework to evaluate requests that takes into account both the resources required,

and the potential returns.

Monetization approaches

It turns out that there are many ways to approach monetizing integrations. Some are

direct, transactional models, some take a bundling or tiering approach, and others rely

on integrations as growth drivers. There is no “right” model as fit depends on the type of

customer you’re selling to, their integration requirements, and your delivery model. However,

there is almost always a way to turn integrations into a revenue generator.

While there is no “one-size-fits-all” model, there are some common guidelines that all

monetization approaches should follow:

 1. Aim for 10-15% of total contract value. Think about integration pricing in the context of

your overall price point and the value that customers receive from your product. No customer

is going to pay 50% more above the base value of your product for integration features—no

matter how important they are.

2. Recurring revenue is key. Integrations aren’t ever a “one-and-done” effort. Even with

a great development and delivery process, there will be ongoing maintenance. End users

understand this, and are generally willing to pay on an ongoing basis to ensure smooth,

continuous operations of their workflows. One-time charges are easier to sell with some

approaches, but can often result in SaaS companies leaving money on the table.

3. Position integrations as an add-on. It’s harder (though not impossible) to monetize

integrations if they’re included into default packages. Relevant integrations provide

tremendous value to customers that need them, but those that don’t may resent what they

perceive to be an additional charge. To be clear, your company shouldn’t necessarily sell

integrations one at a time in every case, but you should position them to command a premium

over base product offerings.

7

10 ways to
monetize integrations
While not an exhaustive list, the following approaches represent some of the most common

ways in which SaaS companies look to monetize their integration offerings. Some are direct

transactional models, some are built around packaging, and others are geared toward

customer or channel growth.

1. Price per integration.
Pricing for individual integrations is the most straightforward model, and one that works

well in a couple of situations. If your company is expected to deliver custom integrations on

a per-customer basis—especially through a professional services model, it simply makes

sense to charge per integration. Pricing per integration can also work if individual integrations

customers perceive integrations to be particularly strategic or complex. It’s usually easy to

monetize any high-value feature separately, and integrations can often fall into this category.

One important consideration for product teams is whether to price each integration as a one-

time fee or a subscription. While it’s common to price professional services engagements on

an hourly basis, companies should consider the fact that integrations often have a significant

amount of post-production maintenance associated with them. Unless the customer is

expected to maintain and support the integration themselves, some sort of subscription

pricing should be used to cover ongoing support.

2. Create integration bundles.
This second monetization model maintains a transactional approach, but rather than

charging individually, it uses one or more packaging bundles to sell relevant integrations to

different customer segments. It’s possible to align integration bundles to specific customer

segments, such as a set of integrations to EMR, HCM, and billing tools for healthcare

customers, or a combination of marketing automation and digital advertising tools for

marketers.

Another approach is to bundle based on complexity. For instance, simple point-to-point

integrations for productivity or project management tools could be in one (lower-priced)

package, and a set of integrations with enterprise ERP or CRM tools could be in a higher-level

8

bundle. Just like other software features, the strategy here is to create packages that align

with customer values.

3. Build an integration marketplace.
Many large SaaS companies—especially those that sell into consumer or SMB markets—

end up creating some sort of solutions or integrations marketplace for integration features.

Marketplaces are an easy way for end users to discover integrations, and they provide a

vehicle for third-party developers to participate.

Having an active development community and a way for third-party developers to monetize

the integration solutions they build can take some of the integration burden off of your own

development teams. However, marketplaces come with the burden of supporting third-

party integrations. It’s common to price marketplaces on a pay-per-use basis or to charge a

universal access fee.

4. Add to standard offering.
Yes, including integrations with your base product largely runs contrary to the best practices

we outlined earlier, but there are times where it makes sense to include integration features

into a standard or base offering of a product, rather than positioning them as an add-on.

Packaging integrations with your base product can be useful if an integration provides value

for a broad set of users, and can justify an overall price increase. Integrations to very common

enterprise tools like major CRM systems can be deployed this way. In this way, integrations

can be a useful tool for product teams to quickly grow a product’s average sale price (ASP).

5. Create premium tiers.
Premium tiering combines the idea of integration bundles with integration feature inclusion

in a core product offering. Rather than adding integration features to a standard offering,

companies can use tiers as the basis for additional, higher-priced solution packages. For

example, it’s possible to offer integrations to major enterprise tools (such as ERP, CRM,

and/or HCM) as part of an “enterprise” tier. Effectively, integrations can serve as additional

differentiation between tiers when customers don’t perceive enough value to upgrade.

6. Freemium conversion.
For companies that rely on a freemium model for growth, integrations can be a powerful

lever to increase conversion rates. Freemium versions of a product can offer no, or limited

integration capabilities, and place more-advanced capabilities in a paid tier. One strategy to

drive conversions is to initially offer an “integration trial period” for new sign-ups during which

9

all features are available. Once customers have live data from your product flowing across

their stack, they will be more likely to pay to keep the integrations running.

7. Customer support add-on.
It can make sense for companies that primarily deliver integrations to include them as

part of a service offering. If customer requirements are too specific or varied for a true

integration product feature, another way that teams can productize is through support

offerings. It’s possible to more-specifically define support options than with open-ended

services engagements, and more importantly, it’s possible to structure support options as a

subscription. A subscription model can capture revenue to cover the ongoing maintenance of

any customer integration—even when the integration is part of a custom solution.

8. Customer support tier.
Similar to a support add-on, but in this instance, it’s possible to add support for one or more

custom integrations to a specific support tier or package. Support tiering makes sense if

integrations are a regular, consistent customer requirement. Adding integrations to a support

tier alongside faster response times or extended implementation support can make premium

support tiers more attractive to prospective customers.

9. Expand partner channels.
Leveraging third-party providers like system integrators can be a great approach to manage

custom or professional services integration delivery. Third-party providers can take the

integration development and maintenance burden from your team, and can become a growth

driver for the business as they recommend or even resell your offerings.

Companies can use integrations as a way to cultivate the lucrative partnerships between

themselves, partners, and customers. Providing a useful integration toolset that makes it

easier for partners to build integrations can encourage companies to build a practice around

your offerings—providing integration, implementation, and ultimately driving growth for you.

10. Increase retention rates.
Not technically a monetization technique, but it’s important to note the role that integrations

can play in making your product “sticky.” Customers that deploy integrations are less likely

to churn, and integration features themselves can drive a 30%+ increase in retention rates.

Factoring in the increased revenue from a higher customer lifetime value can sometimes

completely justify the cost of building and maintaining integrations by itself. In situations

like this, especially where lack of integrations is a known customer pain point, not placing a

10

premium or separate price on the integrations you deliver can make sense.

It’s important to note that an integration strategy doesn’t need to rely on a single monetization

approach. Companies can use multiple delivery and monetization models for different

integration offerings. Even SaaS companies in similar spaces can have widely different

approaches. For example, Eventbrite, an event management platform primarily for individuals

and smaller organizations, uses a marketplace approach to deliver integrations to its users.

Bizzabo, which is also an event management platform, uses a combination of approaches—

providing some integrations as paid features, and others as custom services for its

customers.

Companies can use multiple delivery and monetization
 models for different integration offerings.

Regardless of approach, understanding how to monetize integrations helps any product team

better evaluate and prioritize integration requests. Understanding monetization also serves

as a key driver in forecasting the return on investment associated with integrations. Next, this

guide will walk through an ROI framework to build a business case for integration initiatives to

better understand their potentially positive impact on your business.

https://www.eventbrite.com/apps/
https://www.bizzabo.com/integrations

11

An integration ROI framework
While this guide is all about turning integrations into revenue drivers, integrations aren’t

without costs. There are, of course, development, maintenance, and sometimes software

costs associated with any integration feature. However, the cost-center mindset can

be paralyzing when product teams don’t think through all of the potential returns that

integrations can provide. The following section outlines a simple framework you can use to

evaluate integration projects, and clearly understand whether or not there’s a case to be

made for specific integration opportunities.

the cost-center mindset can be paralyzing

Integration costs

This model looks at a five-year cost/payback period, but you can easily adjust the timeframe

as needed for your own calculations. First up, we’ll look at the costs. There are three basic

cost categories to consider: the initial development costs, the ongoing maintenance costs,

and costs of software. Costs are dependent on your approach to building integrations.

Some companies choose to develop all of their integration capabilities in-house, in which

case, required engineering hours determine development costs. Other teams outsource

integrations to third-party consultants or developers, in which case the primary development

cost is the consulting engagement fees.

A third path is to use embedded integration software to simplify and accelerate solution

development. Embedded solutions abstract away much of the API endpoint complexity, and

often provide low-code authoring tools that make it easier to develop integrations. Using an

embedded solution, there is still some (much lower) engineering implementation cost, but

there’s an added software subscription license.

When using an embedded solution, integration maintenance usually falls to a combination

of customer support and engineering teams. Generally, maintenance costs will be higher

with third-party integrations as internal teams won’t have as clear an understanding of the

solution, and lower for teams that use embedded solutions for integration development.

For this example, let’s assume that we’re leveraging an embedded integration platform to

implement two integrations. Our cost structure would look like this:

12

The cost assumptions include 120 hours of initial development time for two integrations, two

hours per month of maintenance and support, a fully loaded engineering cost of $90 per hour,

and a shared engineering and customer support cost of $77 per hour.

Integration returns - incremental revenue

The first category of returns that we’ll discuss are the specific revenue gains associated with

integration features. We can now put our monetization strategy into play. For this example,

let’s assume that one integration is priced at $1,500 per year, and the second is positioned as

a higher-value feature (integration with an enterprise system used by large companies) and

priced at $2,500 per year. Revenue returns would look like this:

For our calculations, we’re assuming a customer base growing 22% per year, an attach rate

for the first integration of 10%, and an attach rate for the second integration of 4%. Using our

assumptions, we already see a positive overall ROI for the integrations, but there are several

other returns to factor into the analysis.

Costs

Software license subscription

Implementation/development cost

Integration maintenance cost

Total costs

Initial

$108,000

$108,000

Year 1

$80,000

$1,850

$81,850

Year 2

$80,000

$1,850

$81,850

Year 3

$80,000

$1,850

$81,850

Year 4
$80,000

$1,850

$81,850

Year 5

$80,000

$1,850

$81,850

Revenue

Total customers

Integration 1 purchased

Integration 2 purchased

Total revenue

Integration 1 revenue

Integration 2 revenue

300

12

$45,000

30

$30,000

$75,000

Year 2

350

2

$52,452

5

$34,968

$87,420

Year 3

439

4

$65,802

9

$43,868

$109,670

Year 4

555

5

$83,300

12

$25,533

$108,833

Year 5

708

6

$106,182

15

$40,380

$146,562

13

Integration returns - churn reduction

One of the direct benefits of integration features is that they help to reduce customer churn.

A customer that has an active integration running is using data from your product as part of

broader team processes or workflows. As a result, the “stickiness” of your product increases

as customers will have to address stakeholder and system dependencies if customers decide

to stop using your product. In fact, some companies see as much as 36% higher retention for

customers that use integrations with an embedded solution.

Updating our model, let’s assume that the current customer churn rate is 6%, and our average

deal size is $25,000. If every customer that adopts an integration has a 20% lower churn rate,

we’d see the following incremental revenue:

Our example doesn’t show a massive lift, but even a small improvement in retention rate

driven by integrations would result in more than $200,000 additional revenue over five years.

Integration returns - increased win-rate

One additional place where companies can realize benefits from integrations is in new

business win rates. In the same way that integrations can improve customer satisfaction and

retention, they can also make your product more attractive during the sales cycle. While some

integrations may seem like basic requirements, certain integrations are “must-have” features

for prospective customers. Vendors that cannot provide must-have integrations typically

lose out to competitors that can. Losing deals is one of the most common sources of internal

friction around integrations as sales teams press their counterparts in product management

to address a deal-killing lack of integrations.

While sales deals are a common driver for integration requests, they aren’t always part of

Churn reduction

Total customers (no integrations)

Revenue (no integrations)

Total customers (with integrations)

Revenue gain

Initial

Revenue (with integrations)

Year 1

300

$ -

$7,500,000

300

$7,500,000

Year 2

350

$27,489

$8,742,000

351

$8,769,489

Year 3

439

$67,647

$10,966,980

440

$11,012,467

Year 4
555

$67,647

$13,883,311

558

$13,950,958

Year 5

708

$95,330

$17,696,968

712

$17,792,298

https://tray.io/customers/story/typeform

14

calculating the potential return on an integration investment. Even a small uptick in win rates

can be an important addition to any analysis. Continuing our example from the previous

section, let’s assume a baseline sales win rate of 25%. If the addition of these two integration

features were to drive a slight one-point increase in win rates, the revenue gains would look

like this:

Win rate increase

Total customers (no integrations)

Revenue (no integrations)

Total customers (with integrations)

Revenue gain

Initial

Revenue (with integrations)

Year 1

300

$ -

$7,500,000

300

$7,500,000

Year 2

350

$84,600

$8,742,000

353

$8,826,600

Year 3

439

$189,504

$10,966,980

446

$11,156,484

Year 4
555

$321,108

$13,883,311

568

$14,204,419

Year 5

708

$487,707

$17,696,968

727

$18,184,675

A small improvement in win rate can have an outsized impact on revenue. To summarize our

analysis, we’d see a total expenditure of $512,000 over five years, $520,000 in net new revenue

from integration monetization, and $1,319,000 in new revenue from increased customer

retention and sales win rates. There is clearly a significant return on investment associated

with the integration features.

Now our model, like all models, uses a series of assumptions. Specific circumstances vary,

and there will definitely be instances where there isn’t a positive return on an integration

opportunity. In either case, understanding monetization strategy and following a clear ROI

framework will help you better assess opportunities, manage requests, and prioritize the

integrations that will provide the most value to your business.

There is clearly a significant return on investment
associated with the integration features.

15

A Winning
Monetization Strategy
Integrations aren’t always the difference-maker for any SaaS application, but they are

becoming increasingly important. Customers will rapidly lose patience with offerings that

can’t fully operate as a part of their increasingly complex tech stack. For product teams,

adopting an integration monetization mindset isn’t just a good business opportunity, it’s

essential for product success.

The good news is that integrations aren’t just a necessary, costly initiative that product

teams must grudgingly support. They are opportunities to drive new revenue—either through

direct productization, or through increasing win rates and customer retention. With a clear

understanding of monetization, you will be positioned to capitalize on the opportunity that

integrations provide.

While there are some general guidelines and best practices to consider around integration

monetization, there is no one perfect way. The best way to monetize integrations is the one

that’s aligned with how you go to market, which may vary across integrations. Our above

example assumed a similar pricing and deployment model for a company’s integrations, but

it would be perfectly reasonable to have one integration that’s part of your base package,

another that’s sold as an add-on, and a third that’s delivered as a custom service offering.

As with all pricing and packaging decisions, integration monetization should optimize for

customer segments, how they value integration capabilities, and how your team delivers

integrations.

+1.415.418.3570 | website | blog

About this guide
Written by

Peter Zavlaris, Sr. Product Marketing Manager, Tray.io

Copyright © Tray.io Inc. All rights reserved.

Integration Monetization

BEGINNER’S GUIDE TO IN TEGR ATION MONE TIZ ATION

V ERSION 1.0 | 0 4.0 4.21

A BEGINNER ’S GUIDE

http://tray.io
http://tray.io/blog
https://tray.io

	About this guide

	Button 6:

